Python?Transformers庫(kù)(NLP處理庫(kù))案例代碼講解
以下是一份關(guān)于 transformers 庫(kù)的全面講解,包含基礎(chǔ)知識(shí)、高級(jí)用法、案例代碼及學(xué)習(xí)路徑。內(nèi)容經(jīng)過(guò)組織,適合不同階段的學(xué)習(xí)者。
一、基礎(chǔ)知識(shí)
1. Transformers 庫(kù)簡(jiǎn)介
- 作用:提供預(yù)訓(xùn)練模型(如 BERT、GPT、RoBERTa)和工具,用于 NLP 任務(wù)(文本分類(lèi)、翻譯、生成等)。
- 核心組件:
Tokenizer:文本分詞與編碼Model:神經(jīng)網(wǎng)絡(luò)模型架構(gòu)Pipeline:快速推理的封裝接口
2. 安裝與環(huán)境配置
pip install transformers torch datasets
3. 快速上手示例
from transformers import pipeline
# 使用情感分析流水線
classifier = pipeline("sentiment-analysis")
result = classifier("I love programming with Transformers!")
print(result) # [{'label': 'POSITIVE', 'score': 0.9998}]二、核心模塊詳解
1. Tokenizer(分詞器)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
text = "Hello, world!"
encoded = tokenizer(text,
padding=True,
truncation=True,
return_tensors="pt") # 返回PyTorch張量
print(encoded)
# {'input_ids': tensor([[101, 7592, 1010, 2088, 999, 102]]),
# 'attention_mask': tensor([[1, 1, 1, 1, 1, 1]])}2. Model(模型加載)
from transformers import AutoModel
model = AutoModel.from_pretrained("bert-base-uncased")
outputs = model(**encoded) # 前向傳播
last_hidden_states = outputs.last_hidden_state三、高級(jí)用法
1. 自定義模型訓(xùn)練(PyTorch示例)
from transformers import BertForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset
# 加載數(shù)據(jù)集
dataset = load_dataset("imdb")
tokenized_datasets = dataset.map(
lambda x: tokenizer(x["text"], padding=True, truncation=True),
batched=True
)
# 定義模型
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
# 訓(xùn)練參數(shù)配置
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=8,
evaluation_strategy="epoch"
)
# 訓(xùn)練器配置
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"]
)
# 開(kāi)始訓(xùn)練
trainer.train()2. 模型保存與加載
model.save_pretrained("./my_model")
tokenizer.save_pretrained("./my_model")
# 加載自定義模型
new_model = AutoModel.from_pretrained("./my_model")四、深入進(jìn)階
1. 注意力機(jī)制可視化
from transformers import BertModel, BertTokenizer
import torch
model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
inputs = tokenizer("The cat sat on the mat", return_tensors="pt")
outputs = model(**inputs)
# 提取第0層的注意力權(quán)重
attention = outputs.attentions[0][0]
print(attention.shape) # [num_heads, seq_len, seq_len]2. 混合精度訓(xùn)練
from transformers import TrainingArguments
training_args = TrainingArguments(
fp16=True, # 啟用混合精度
...
)五、完整案例:命名實(shí)體識(shí)別(NER)
from transformers import pipeline
# 加載NER流水線
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
text = "Apple was founded by Steve Jobs in Cupertino."
results = ner_pipeline(text)
# 結(jié)果可視化
for entity in results:
print(f"{entity['word']} -> {entity['entity']} (confidence: {entity['score']:.2f})")六、學(xué)習(xí)路徑建議
入門(mén)階段:
- 官方文檔:huggingface.co/docs/transformers
- 學(xué)習(xí)
pipeline和基礎(chǔ)模型使用
中級(jí)階段:
- 掌握自定義訓(xùn)練流程
- 理解模型架構(gòu)(Transformer、BERT原理)
高級(jí)階段:
- 模型蒸餾與量化
- 自定義模型架構(gòu)開(kāi)發(fā)
- 大模型微調(diào)技巧
七、資源推薦
必讀論文:
- 《Attention Is All You Need》(Transformer 原始論文)
- 《BERT: Pre-training of Deep Bidirectional Transformers》
實(shí)踐項(xiàng)目:
- 文本摘要生成
- 多語(yǔ)言翻譯系統(tǒng)
- 對(duì)話機(jī)器人開(kāi)發(fā)
社區(qū)資源:
- Hugging Face Model Hub
- Kaggle NLP 競(jìng)賽案例
八、高級(jí)訓(xùn)練技巧
1. 學(xué)習(xí)率調(diào)度與梯度裁剪
在訓(xùn)練過(guò)程中動(dòng)態(tài)調(diào)整學(xué)習(xí)率,防止梯度爆炸:
from transformers import TrainingArguments
training_args = TrainingArguments(
output_dir="./results",
learning_rate=2e-5,
weight_decay=0.01,
warmup_steps=500, # 學(xué)習(xí)率預(yù)熱步數(shù)
gradient_accumulation_steps=2, # 梯度累積(節(jié)省顯存)
gradient_clipping=1.0, # 梯度裁剪閾值
...
)2. 自定義損失函數(shù)(PyTorch示例)
import torch
from transformers import BertForSequenceClassification
class CustomModel(BertForSequenceClassification):
def __init__(self, config):
super().__init__(config)
def forward(self, input_ids, attention_mask, labels=None):
outputs = super().forward(input_ids, attention_mask)
logits = outputs.logits
if labels is not None:
loss_fct = torch.nn.CrossEntropyLoss(weight=torch.tensor([1.0, 2.0])) # 類(lèi)別權(quán)重
loss = loss_fct(logits.view(-1, 2), labels.view(-1))
return {"loss": loss, "logits": logits}
return outputs九、復(fù)雜任務(wù)實(shí)戰(zhàn)
1. 文本生成(GPT-2示例)
from transformers import GPT2LMHeadModel, GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")
prompt = "In a world where AI dominates,"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
# 生成文本(配置生成參數(shù))
output = model.generate(
input_ids,
max_length=100,
temperature=0.7, # 控制隨機(jī)性(低值更確定)
top_k=50, # 限制候選詞數(shù)量
num_return_sequences=3 # 生成3個(gè)不同結(jié)果
)
for seq in output:
print(tokenizer.decode(seq, skip_special_tokens=True))2. 問(wèn)答系統(tǒng)(BERT-based)
from transformers import pipeline
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
context = """
Hugging Face is a company based in New York City.
Its Transformers library is widely used in NLP.
"""
question = "Where is Hugging Face located?"
result = qa_pipeline(question=question, context=context)
print(f"Answer: {result['answer']} (score: {result['score']:.2f})")
# Answer: New York City (score: 0.92)十、模型優(yōu)化與部署
1. 模型量化(減小推理延遲)
from transformers import BertModel, AutoTokenizer
import torch
model = BertModel.from_pretrained("bert-base-uncased")
quantized_model = torch.quantization.quantize_dynamic(
model,
{torch.nn.Linear}, # 量化所有線性層
dtype=torch.qint8
)
# 量化后推理速度提升2-4倍,模型體積減少約75%2. ONNX 格式導(dǎo)出(生產(chǎn)部署)
from transformers import BertTokenizer, BertForSequenceClassification
from torch.onnx import export
model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# 示例輸入
dummy_input = tokenizer("This is a test", return_tensors="pt")
# 導(dǎo)出為ONNX
export(
model,
(dummy_input["input_ids"], dummy_input["attention_mask"]),
"model.onnx",
opset_version=13,
input_names=["input_ids", "attention_mask"],
output_names=["logits"],
dynamic_axes={"input_ids": {0: "batch"}, "attention_mask": {0: "batch"}}
)十一、調(diào)試與性能分析
1. 檢查顯存占用
import torch
# 在訓(xùn)練循環(huán)中插入顯存監(jiān)控
print(f"Allocated: {torch.cuda.memory_allocated() / 1e9:.2f} GB")
print(f"Cached: {torch.cuda.memory_reserved() / 1e9:.2f} GB")2. 使用 PyTorch Profiler
from torch.profiler import profile, record_function, ProfilerActivity
with profile(activities=[ProfilerActivity.CUDA], record_shapes=True) as prof:
outputs = model(**inputs)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))十二、多語(yǔ)言與跨模態(tài)
1. 多語(yǔ)言翻譯(mBART)
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
# 中文轉(zhuǎn)英文
tokenizer.src_lang = "zh_CN"
text = "歡迎使用Transformers庫(kù)"
encoded = tokenizer(text, return_tensors="pt")
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
print(tokenizer.batch_decode(generated_tokens, skip_special_tokens=True))
# ['Welcome to the Transformers library']2. 圖文多模態(tài)(CLIP)
from PIL import Image
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
image = Image.open("cat.jpg")
text = ["a photo of a cat", "a photo of a dog"]
inputs = processor(text=text, images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
# 計(jì)算圖文相似度
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1) # 概率分布十三、學(xué)習(xí)路徑補(bǔ)充
1. 深入理解 Transformer 架構(gòu)
實(shí)現(xiàn)一個(gè)簡(jiǎn)化版 Transformer:
import torch.nn as nn
class TransformerBlock(nn.Module):
def __init__(self, d_model=512, nhead=8):
super().__init__()
self.attention = nn.MultiheadAttention(d_model, nhead)
self.linear = nn.Linear(d_model, d_model)
self.norm = nn.LayerNorm(d_model)
def forward(self, x):
attn_output, _ = self.attention(x, x, x)
x = x + attn_output
x = self.norm(x)
x = x + self.linear(x)
return x2. 參與開(kāi)源項(xiàng)目
- 貢獻(xiàn) Hugging Face 代碼庫(kù)
- 復(fù)現(xiàn)最新論文模型(如 LLaMA、BLOOM)
十四、常見(jiàn)問(wèn)題解答
1. OOM(顯存不足)錯(cuò)誤處理
解決方案:
- 減小
batch_size - 啟用梯度累積 (
gradient_accumulation_steps) - 使用混合精度 (
fp16=True) - 清理緩存:
torch.cuda.empty_cache()
2. 中文分詞特殊處理
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained("bert-base-chinese")
# 手動(dòng)添加特殊詞匯
tokenizer.add_tokens(["【特殊詞】"])
# 調(diào)整模型嵌入層
model.resize_token_embeddings(len(tokenizer)) 以下繼續(xù)擴(kuò)展關(guān)于 transformers 庫(kù)的深度應(yīng)用內(nèi)容,涵蓋更多實(shí)際場(chǎng)景、前沿技術(shù)及工業(yè)級(jí)實(shí)踐方案。
十五、前沿技術(shù)實(shí)踐
1. 大語(yǔ)言模型(LLM)微調(diào)(以 LLaMA 為例)
from transformers import LlamaForCausalLM, LlamaTokenizer, TrainingArguments
# 加載模型和分詞器(需申請(qǐng)權(quán)限)
model = LlamaForCausalLM.from_pretrained("decapoda-research/llama-7b-hf")
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
# 低秩適配(LoRA)微調(diào)
from peft import get_peft_model, LoraConfig
lora_config = LoraConfig(
r=8, # 低秩維度
lora_alpha=32,
target_modules=["q_proj", "v_proj"], # 僅微調(diào)部分模塊
lora_dropout=0.05,
bias="none"
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters() # 顯示可訓(xùn)練參數(shù)占比(通常 <1%)
# 繼續(xù)配置訓(xùn)練參數(shù)...2. 強(qiáng)化學(xué)習(xí)與人類(lèi)反饋(RLHF)
# 使用 TRL 庫(kù)進(jìn)行 RLHF 訓(xùn)練
from trl import PPOTrainer, AutoModelForCausalLMWithValueHead
model = AutoModelForCausalLMWithValueHead.from_pretrained("gpt2")
ppo_trainer = PPOTrainer(
model=model,
config=training_args,
dataset=dataset,
tokenizer=tokenizer
)
# 定義獎(jiǎng)勵(lì)模型
for epoch in range(3):
for batch in ppo_trainer.dataloader:
# 生成響應(yīng)
response_tensors = model.generate(batch["input_ids"])
# 計(jì)算獎(jiǎng)勵(lì)(需自定義獎(jiǎng)勵(lì)函數(shù))
rewards = calculate_rewards(response_tensors, batch)
# PPO 優(yōu)化步驟
ppo_trainer.step(
response_tensors,
rewards,
batch["attention_mask"]
)十六、工業(yè)級(jí)應(yīng)用方案
1. 分布式訓(xùn)練(多GPU/TPU)
from transformers import TrainingArguments
# 配置分布式訓(xùn)練
training_args = TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=8,
fp16=True,
tpu_num_cores=8, # 使用TPU時(shí)指定核心數(shù)
dataloader_num_workers=4,
deepspeed="./configs/deepspeed_config.json" # 使用DeepSpeed優(yōu)化
)
# DeepSpeed 配置文件示例(ds_config.json):
{
"fp16": {
"enabled": true
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": 3e-5
}
},
"zero_optimization": {
"stage": 3 # 啟用ZeRO-3優(yōu)化
}
}2. 流式推理服務(wù)(FastAPI + Transformers)
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import pipeline
app = FastAPI()
generator = pipeline("text-generation", model="gpt2")
class Request(BaseModel):
text: str
max_length: int = 100
@app.post("/generate")
async def generate_text(request: Request):
result = generator(request.text, max_length=request.max_length)
return {"generated_text": result[0]["generated_text"]}
# 啟動(dòng)服務(wù):uvicorn main:app --port 8000十七、特殊場(chǎng)景處理
1. 長(zhǎng)文本處理(滑動(dòng)窗口)
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")
model = AutoModelForQuestionAnswering.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")
def process_long_text(context, question, max_length=384, stride=128):
# 分塊處理長(zhǎng)文本
inputs = tokenizer(
question,
context,
max_length=max_length,
truncation="only_second",
stride=stride,
return_overflowing_tokens=True,
return_offsets_mapping=True
)
# 對(duì)各塊推理并合并結(jié)果
best_score = 0
best_answer = ""
for i in range(len(inputs["input_ids"])):
outputs = model(**{k: torch.tensor([v[i]]) for k, v in inputs.items()})
answer_start = torch.argmax(outputs.start_logits)
answer_end = torch.argmax(outputs.end_logits) + 1
score = (outputs.start_logits[answer_start] + outputs.end_logits[answer_end-1]).item()
if score > best_score:
best_score = score
best_answer = tokenizer.decode(inputs["input_ids"][i][answer_start:answer_end])
return best_answer2. 低資源語(yǔ)言處理
# 使用 XLM-RoBERTa 進(jìn)行跨語(yǔ)言遷移
from transformers import XLMRobertaTokenizer, XLMRobertaForSequenceClassification
tokenizer = XLMRobertaTokenizer.from_pretrained("xlm-roberta-base")
model = XLMRobertaForSequenceClassification.from_pretrained("xlm-roberta-base")
# 通過(guò)少量樣本微調(diào)(代碼與BERT訓(xùn)練類(lèi)似)十八、模型解釋性
1. 特征重要性分析(使用 Captum)
from captum.attr import LayerIntegratedGradients
from transformers import BertForSequenceClassification
model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
def forward_func(input_ids, attention_mask):
return model(input_ids, attention_mask).logits
lig = LayerIntegratedGradients(forward_func, model.bert.embeddings)
# 計(jì)算輸入詞重要性
attributions, delta = lig.attribute(
inputs=input_ids,
baselines=tokenizer.pad_token_id * torch.ones_like(input_ids),
additional_forward_args=attention_mask,
return_convergence_delta=True
)
# 可視化結(jié)果
import matplotlib.pyplot as plt
plt.bar(range(len(attributions[0])), attributions[0].detach().numpy())
plt.xticks(ticks=range(len(tokens)), labels=tokens, rotation=90)
plt.show()十九、生態(tài)系統(tǒng)整合
1. 與 spaCy 集成
import spacy
from spacy_transformers import TransformersLanguage, TransformersWordPiecer
# 創(chuàng)建spacy管道
nlp = TransformersLanguage(trf_name="bert-base-uncased")
# 自定義組件
@spacy.registry.architectures("CustomClassifier.v1")
def create_classifier(transformer, tok2vec, n_classes):
return TransformersTextCategorizer(transformer, tok2vec, n_classes)
# 在spacy中直接使用Transformer模型
doc = nlp("This is a text to analyze.")
print(doc._.trf_last_hidden_state.shape) # [seq_len, hidden_dim]2. 使用 Gradio 快速構(gòu)建演示界面
import gradio as gr
from transformers import pipeline
ner_pipeline = pipeline("ner")
def extract_entities(text):
results = ner_pipeline(text)
return {"text": text, "entities": [
{"entity": res["entity"], "start": res["start"], "end": res["end"]}
for res in results
]}
gr.Interface(
fn=extract_entities,
inputs=gr.Textbox(lines=5),
outputs=gr.HighlightedText()
).launch()二十、持續(xù)學(xué)習(xí)建議
跟蹤最新進(jìn)展:
- 關(guān)注 Hugging Face 博客和論文(如 T5、BLOOM、Stable Diffusion)
- 參與社區(qū)活動(dòng)(Hugging Face 的 Discord 和論壇)
實(shí)戰(zhàn)項(xiàng)目進(jìn)階:
- 構(gòu)建端到端 NLP 系統(tǒng)(數(shù)據(jù)清洗 → 模型訓(xùn)練 → 部署監(jiān)控)
- 參加 Kaggle 比賽(如 CommonLit Readability Prize)
系統(tǒng)優(yōu)化方向:
- 模型量化與剪枝
- 服務(wù)端優(yōu)化(TensorRT 加速、模型并行)
- 邊緣設(shè)備部署(ONNX Runtime、Core ML)
以下繼續(xù)擴(kuò)展關(guān)于 transformers 庫(kù)的終極實(shí)踐指南,涵蓋生產(chǎn)級(jí)優(yōu)化、前沿模型架構(gòu)、領(lǐng)域?qū)S梅桨讣皞惱砜剂俊?/p>
二十一、生產(chǎn)級(jí)模型優(yōu)化
1. 模型剪枝與知識(shí)蒸餾
# 使用 nn_pruning 進(jìn)行結(jié)構(gòu)化剪枝
from transformers import BertForSequenceClassification
from nn_pruning import ModelPruning
model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
pruner = ModelPruning(
model,
target_sparsity=0.5, # 剪枝50%的注意力頭
pattern="block_sparse" # 結(jié)構(gòu)化剪枝模式
)
# 執(zhí)行剪枝并微調(diào)
pruned_model = pruner.prune()
pruned_model.save_pretrained("./pruned_bert")
# 知識(shí)蒸餾(教師→學(xué)生模型)
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
teacher = BertForSequenceClassification.from_pretrained("bert-base-uncased")
student = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
# 使用蒸餾訓(xùn)練器
from transformers import DistillationTrainingArguments, DistillationTrainer
training_args = DistillationTrainingArguments(
output_dir="./distilled",
temperature=2.0, # 軟化概率分布
alpha_ce=0.5, # 交叉熵?fù)p失權(quán)重
alpha_mse=0.5 # 隱藏層MSE損失權(quán)重
)
trainer = DistillationTrainer(
teacher=teacher,
student=student,
args=training_args,
train_dataset=tokenized_datasets["train"],
tokenizer=tokenizer
)
trainer.train()2. TensorRT 加速推理
# 轉(zhuǎn)換模型為T(mén)ensorRT引擎 trtexec --onnx=model.onnx --saveEngine=model.trt --fp16
# Python 調(diào)用TensorRT引擎
import tensorrt as trt
import pycuda.driver as cuda
runtime = trt.Runtime(trt.Logger(trt.Logger.WARNING))
with open("model.trt", "rb") as f:
engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()
# 綁定輸入輸出緩沖區(qū)進(jìn)行推理二十二、領(lǐng)域?qū)S媚P?/h2>
1. 生物醫(yī)學(xué)NLP(BioBERT)
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-v1.1")
model = AutoModelForTokenClassification.from_pretrained("dmis-lab/biobert-v1.1")
text = "The patient exhibited EGFR mutations and responded to osimertinib."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs).logits
# 提取基因?qū)嶓w
predictions = torch.argmax(outputs, dim=2)
print([tokenizer.decode([token]) for token in inputs.input_ids[0]])
print(predictions.tolist()) # BIO標(biāo)注結(jié)果2. 法律文書(shū)解析(Legal-BERT)
# 合同條款分類(lèi)
from transformers import BertTokenizer, BertForSequenceClassification
tokenizer = BertTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased")
model = BertForSequenceClassification.from_pretrained("nlpaueb/legal-bert-base-uncased")
clause = "The Parties hereby agree to arbitrate all disputes in accordance with ICC rules."
inputs = tokenizer(clause, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
predicted_class = torch.argmax(outputs.logits).item() # 0: 仲裁條款, 1: 保密條款等二十三、邊緣設(shè)備部署
1. Core ML 轉(zhuǎn)換(iOS部署)
from transformers import BertForSequenceClassification
import coremltools as ct
model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# 轉(zhuǎn)換模型
traced_model = torch.jit.trace(model, (input_ids, attention_mask))
mlmodel = ct.convert(
traced_model,
inputs=[
ct.TensorType(name="input_ids", shape=input_ids.shape),
ct.TensorType(name="attention_mask", shape=attention_mask.shape)
]
)
mlmodel.save("BertSenti.mlmodel")2. TensorFlow Lite 量化(Android部署)
from transformers import TFBertForSequenceClassification
import tensorflow as tf
model = TFBertForSequenceClassification.from_pretrained("bert-base-uncased")
# 轉(zhuǎn)換為T(mén)FLite
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT] # 動(dòng)態(tài)范圍量化
tflite_model = converter.convert()
with open("model_quant.tflite", "wb") as f:
f.write(tflite_model)二十四、倫理與安全
1. 偏見(jiàn)檢測(cè)與緩解
from transformers import pipeline
from fairness_metrics import demographic_parity
# 檢測(cè)模型偏見(jiàn)
classifier = pipeline("text-classification", model="bert-base-uncased")
protected_groups = {
"gender": ["she", "he"],
"race": ["African", "European"]
}
bias_scores = {}
for category, terms in protected_groups.items():
texts = [f"{term} is qualified for this position" for term in terms]
results = classifier(texts)
bias_scores[category] = demographic_parity(results)2. 對(duì)抗樣本防御
from textattack import AttackRecipe
from textattack.models.wrappers import HuggingFaceModelWrapper
model_wrapper = HuggingFaceModelWrapper(model, tokenizer)
attack = AttackRecipe.build("bae") # BAE攻擊方法
# 生成對(duì)抗樣本
attack_args = textattack.AttackArgs(num_examples=5)
attacker = textattack.Attacker(attack, model_wrapper, attack_args)
attack_results = attacker.attack_dataset(dataset)二十五、前沿架構(gòu)探索
1. Sparse Transformer(處理超長(zhǎng)序列)
from transformers import LongformerModel
model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
inputs = tokenizer("This is a very long document..."*1000, return_tensors="pt")
outputs = model(**inputs) # 支持最長(zhǎng)4096 tokens2. 混合專(zhuān)家模型(MoE)
# 使用Switch Transformers
from transformers import SwitchTransformersForConditionalGeneration
model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-8")
outputs = model.generate(
input_ids,
expert_choice_mask=True, # 追蹤專(zhuān)家路由
)
print(outputs.expert_choices) # 顯示每個(gè)token使用的專(zhuān)家二十六、全鏈路項(xiàng)目模板
"""
端到端文本分類(lèi)系統(tǒng)架構(gòu):
1. 數(shù)據(jù)采集 → 2. 清洗 → 3. 標(biāo)注 → 4. 模型訓(xùn)練 → 5. 評(píng)估 → 6. 部署 → 7. 監(jiān)控
"""
# 步驟4的增強(qiáng)訓(xùn)練流程
from transformers import TrainerCallback
class CustomCallback(TrainerCallback):
def on_log(self, args, state, control, logs=None, **kwargs):
# 實(shí)時(shí)記錄指標(biāo)到Prometheus
prometheus_logger.log_metrics(logs)
# 步驟7的漂移檢測(cè)
from alibi_detect.cd import MMDDrift
detector = MMDDrift(
X_train,
backend="tensorflow",
p_val=0.05
)
drift_preds = detector.predict(X_prod)二十七、終身學(xué)習(xí)建議
技術(shù)跟蹤:
- 訂閱 arXiv 的 cs.CL 分類(lèi)
- 參與 Hugging Face 社區(qū)周會(huì)
技能擴(kuò)展:
- 學(xué)習(xí)模型量化理論(《Efficient Machine Learning》)
- 掌握 CUDA 編程基礎(chǔ)
跨界融合:
- 探索 LLM 與知識(shí)圖譜結(jié)合
- 研究多模態(tài)大模型(如 Flamingo、DALL·E 3)
倫理實(shí)踐:
- 定期進(jìn)行模型公平性審計(jì)
- 參與 AI for Social Good 項(xiàng)目
到此這篇關(guān)于Python Transformers庫(kù)【NLP處理庫(kù)】全面講解的文章就介紹到這了,更多相關(guān)Python Transformers庫(kù)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
使用Python生成隨機(jī)圖片驗(yàn)證碼的代碼詳解
當(dāng)我們?cè)趯?xiě)一個(gè)Web項(xiàng)目的時(shí)候一般要寫(xiě)登錄操作,而為了安全起見(jiàn),現(xiàn)在的登錄功能都會(huì)加上輸入圖片驗(yàn)證碼這一功能,所以本文就給大家介紹一下如何使用Python生成隨機(jī)圖片驗(yàn)證碼,需要的朋友可以參考下2023-07-07
Python爬蟲(chóng)實(shí)戰(zhàn)之網(wǎng)易云音樂(lè)加密解析附源碼
讀萬(wàn)卷書(shū)不如行萬(wàn)里路,學(xué)的扎不扎實(shí)要通過(guò)實(shí)戰(zhàn)才能看出來(lái),本篇文章手把手帶你解析網(wǎng)易云音樂(lè)數(shù)據(jù),大家可以在實(shí)戰(zhàn)過(guò)程中更有效的掌握python2021-10-10
解決jupyter (python3) 讀取文件遇到的問(wèn)題
這篇文章主要介紹了解決jupyter (python3) 讀取文件遇到的問(wèn)題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2021-03-03
Python+PIL實(shí)現(xiàn)批量在圖片上寫(xiě)上自定義文本
Pillow 是一個(gè) Python 的圖像處理庫(kù),它是 Python Imaging Library (PIL) 的一個(gè)分支,并且增加了更多的功能,下面我們看看如何利用它實(shí)現(xiàn)批量在圖片上寫(xiě)上自定義的文本吧2024-11-11
python matplotlib繪圖實(shí)現(xiàn)刪除重復(fù)冗余圖例的操作
這篇文章主要介紹了python matplotlib繪圖實(shí)現(xiàn)刪除重復(fù)冗余圖例的操作,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2021-04-04
詳細(xì)過(guò)程帶你用Python做車(chē)牌自動(dòng)識(shí)別系統(tǒng)
這篇文章主要介紹了帶你用Python做車(chē)牌自動(dòng)識(shí)別系統(tǒng)的詳細(xì)過(guò)程,本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2021-08-08

